

Challenge Statement: Real Time Monitoring and Analytic System of In-building Water Distribution (Predictive Maintenance of the Water

Distribution System)

Challenge Theme – Sustainable Water usage

Background

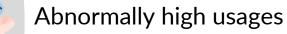
Water Price Revisions

Water prices will be revised in two phases on 1 April 2024 and 1 April 2025.

Potable Water Price

	Before 1 April 2024 Price (\$/m³)		From 1 April 2024 Price (\$/m³)		From 1 April 2025 Price (\$/m³)	
Monthly Water Usage						
	0 - 40m ³	> 40m ³	0 - 40m ³	> 40m ³	0 - 40m ³	> 40m ³
Tariff	\$1.21	\$1.52	\$1.29	\$1.63	\$1.43	\$1.81
Water Conservation Tax (% of Tariff)	\$0.61 (50% of \$1.21)	\$0.99 (65% of \$1.52)	\$0.65 (50% of \$1.29)	\$1.06 (65% of \$1.63)	\$0.72 (50% of \$1.43)	\$1.18 (65% of \$1.81)
Waterborne Tax	\$0.92	\$1.18	\$1.00	\$1.25	\$1.09	\$1.40
Total Price	\$2.74	\$3.69	\$2.94	\$3.94	\$3.24	\$4.39

Note: Water is charged per cubic metre (m³), which is equivalent to 1000 litres. Higher water price applies for households with monthly usage above 40 cubic metres, to encourage water conservation. All figures are before GST.


https://www.pub.gov.sg/Public/WaterLoop/Water-Price

To prevent wastage and ensure water is used efficiently, it is import to have early detection of:

C Leakages

Faulty fittings

Challenges

- 1. Concealed pipe leaks
 - Water distribution pipes concealed within false ceilings, behind walls and underground.
 - As a building ages, there might be potential leaks in the pipes which will pose an issue if not discovered in a timely manner.
 - Leaks will gradually worsen over time. If left undetected, it may lead to property damage and hinders businesses.
- 2. Malfunctioning flush valve and water fittings
 - Flush valves and water fittings might become faulty due to wear and tear.
 - High wastage when the faulty valves/fittings happens during off-peak periods (e.g. night, weekends, etc).
- 3. Misuse of taps at common areas
 - Taps are commonly available in common areas.
 - These are usually locked up and used by the conservancy team for common area washing.
 - Locks are often broken and illegal used.

Envisioned Solution

JTC is seeking innovative solutions to achieve water savings through predictive maintenance of water distribution system in an industrial building.

- A smart water management system with predictive maintenance and machine learning capabilities to detect leakages before it happens; and
- Identify abnormal water usage using real-time information on water usage activities within an industrial building.

BUILDING INDUSTRIES

Proposed location: CleanTech One

Generative AI for improved user experience

Smart water meters

Water pH level/metal ion measurement

Vibration sensors

CCTVs

Solutions may be a combination of AI solutionings and sensory devices:

Desired Outcome

The envisioned solution shall:

- Real-time information on various water usage activities at various areas (e.g. toilets, Cooling Towers, general washing, etc);
- Utilise industry benchmarks and past data to predict potential pipe leaks (including underground pipes), before it happens
- Early detection of areas with unusual usage in water consumption
- Provide diagnostic reports
- Calculate the potential cost avoidance due to early detection/ predictive maintenance
- Chart and analyse water consumption
- Compares the total water supplied to the building, the actual water consumed within all the water end uses and total water leaving the site. This information should be presented/visualised in an easy-to-understand format.

Requirements

- 1. Able to gather accurate real-time information of areas of interests
- 2. Able to track the total water supplied to the building, the actual water consumed within all the water end uses and total water leaving the site
- 3. Water management assessment results are to be presented/visualised in an easy-tounderstand format
- 4. Use machine learning to be able to predict a pipe leak (before it happens)
- 5. Use machine learning to identify spikes/unusual usages, analyse and propose potential root cause (e.g. leak, location, illegal tapping, etc)
- 6. Produce diagnostic reports, recommendations and follow up actions that is simple and understandable to a non-technical person
- 7. Able to provide estimated cost avoidance due to the predictive maintenance/early detection
- 8. Ensure minimal disruption to tenants during installation and operation
- 9. Ensure minimal disruption to the existing domestic water supply system

